science,
Measurement, and Uncertainty:
and
Uncertainty:
`>
and brid
ccuracy and Precision

Defir		Name
Definitions: Accuracy - h		60
Definitions: Accuracy – how close a measurement is to		
se a mea		
asureme	ACC	
ent is to	URAC	
	ACCURACY AND PRECISION	Period
	PREC	ğ
	Noisic	
		Date
]
,		
		- 1

precision – how close a measurement is to

Precision versus Accuracy:

LOOK at each target and decide whether the "hits" are accurate, precise, both accurate and precise, or neither accurate nor precise; (Note: An accurate "hit" is a bulls eyel)

Precision Problems:

A group of students worked in separate teams to measure the langth of an object. Here are their data:

	- 0411		1 1 1 1 1	0	i datii C	E GOLLI
2.65 cm	2.75 cm	2 80 cm	2 77 cm	2 60 00	N 22 CM	288 000
7.00 CH	2.75 pm	2,80 cm	2.77 cm	2.60 cm	2.65 cm	N

77.7	Divide this	
300 Signature +	Divide this number by 2:	
	2: cm.	

I his is the approximate ± range from the average.

Demyslifying Scientific Date: RET 2006, Rev :

Science, Measurement, and Uncertainty: Accuracy and Precision

A second group of students obtained the following data:

2.78 cm	2.62 cm	2,65 cm	2.75 cm	2.80 cm	2.70 cm 2.80 cm	2.60 cm
Team 14	Team 13	Team 12	Team 11	Team 10	Team 9	Team 8

- The average length is E
- The precision of the measurement was L CITI.

In comparing groups, the first or the second, which group was more precise or was the precision the same? Justify your answer.

Expressing
Errors in
Measurement

Scientists often express their uncertainty and error in measurement by giving a percent error. The percent error is defined as:

Answer the following four questions. Pay attention to significant figures, and show your work!

1. While doing a lab, a student found the density of a piece of pure aluminum to be 2.85 g/cma. The accepted value for the density of aluminum is 2.70 g/cma. What was the student's percent error?

Demystifying Scientific Data: RET 2006, Rev 2